Evolutionary Learning of Fuzzy Rules: Competition and Cooperation

نویسنده

  • Andrea Bonarini
چکیده

We discuss the problem of learning fuzzy rules using Evolutionary Learning techniques, such as Genetic Algorithms and Learning Classifier Systems. We present ELF, a system able to evolve a population of fuzzy rules to obtain a sub-optimal Fuzzy Logic Controller. ELF tackles some of the problems typical of the Evolutionary Learning approach: competition and cooperation between fuzzy rules, evolution of general fuzzy rules, imperfect reinforcement programs, fast evolution for real-time applications, dynamic evolution of the focus of the search. We also present some of the results obtained from the application of ELF to the development of Fuzzy Logic Controllers for autonomous agents and for the classical cart-pole problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary Learning of General Fuzzy Rules with Biased Evaluation Functions: Competition and Cooperation

Fuzzy rules cooperate in a Fuzzy Logic Controller (FLC) to produce the best action for a given situation. If we have a population of fuzzy rules controlling a device, and we would like to evolve the population to obtain optimal performance by Reinforcement Learning, rules should compete each other, since we would like to judge their proposals. Therefore, in this approach, cooperation and compet...

متن کامل

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

Resolving the Conflict between Competitive and Cooperative Behavior in Michigan-Type Fuzzy Classifier Systems

A vital problem for fuzzy classifier systems of the Michigan type is the conflict of competition and cooperation of rules. Whereas the classical approach of a classifier system circumvents this complicacy by the total lack of collaboration of classifiers, the fuzzification approach has to deal with it. This paper proposes a solution to this dilemma by introducing a special encoding of the class...

متن کامل

A Framework for Evolving Fuzzy Classifier Systems Using Genetic Programming

A fuzzy classifier system framework is proposed which employs a tree-based representation for fuzzy rule (classifier) antecedents and genetic programming for fuzzy rule discovery. Such a rule representation is employed because of the expressive power and generality it endows to individual rules. The framework proposes accuracy-based fitness for individual fuzzy classifiers and employs evolution...

متن کامل

Increasing fuzzy rules cooperation based on evolutionary adaptive inference systems

This article presents a study on the use of parametrized operators in the Inference System of linguistic fuzzy systems adapted by evolutionary algorithms, for achieving better cooperation among fuzzy rules. This approach produces a kind of rule cooperation by means of the inference system, increasing the accuracy of the fuzzy system without losing its interpretability. We study the different al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996